Respuesta :
[tex] 4^{x} [/tex] ↓
[tex](( 2^{x} )) ^2[/tex]↓
[tex] y^{x} = w [/tex]↓
[tex] w^{2} - w - 56 = 0[/tex]↓
w - 8 & w + 7↓
w(1) = 8 → w(1) = [tex] 2^{x1} = 8[/tex] x(1) = 3↓
w(2) = -7 → w(2) = [tex] 2^{x2} = -7[/tex]
So, therefore the value of "x" would have to be "3"
[tex](( 2^{x} )) ^2[/tex]↓
[tex] y^{x} = w [/tex]↓
[tex] w^{2} - w - 56 = 0[/tex]↓
w - 8 & w + 7↓
w(1) = 8 → w(1) = [tex] 2^{x1} = 8[/tex] x(1) = 3↓
w(2) = -7 → w(2) = [tex] 2^{x2} = -7[/tex]
So, therefore the value of "x" would have to be "3"
The value of [tex]x[/tex] is 3.
Given:
The given equation is:
[tex]4^x-2^x=56[/tex]
To find:
The value of [tex]x[/tex].
Explanation:
The given equation can be rewritten as:
[tex](2^2)^x-2^x-56=0[/tex]
[tex](2^x)^2-2^x-56=0[/tex]
Substitute [tex]2^x=t[/tex] in the above equation.
[tex]t^2-t-56=0[/tex]
Split the middle term.
[tex]t^2-8t+7t-56=0[/tex]
[tex]t(t-8)+7(t-8)=0[/tex]
[tex](t-8)(t+7)=0[/tex]
[tex]t=8,-7[/tex]
Now,
[tex]2^x=8[/tex]
[tex]2^x=2^3[/tex]
[tex]x=3[/tex]
And,
[tex]2^x=-7[/tex]
This statement is not true for any real number [tex]x[/tex].
Therefore, the only real value of [tex]x[/tex] is 3.
Learn more:
https://brainly.com/question/19956884