Respuesta :

[tex] 4^{x} [/tex] ↓
 [tex](( 2^{x} )) ^2[/tex]↓
[tex] y^{x} = w [/tex]↓
[tex] w^{2} - w - 56 = 0[/tex]↓
w - 8  &  w + 7↓
w(1) = 8 → w(1) = [tex] 2^{x1} = 8[/tex] x(1) = 3↓
w(2) = -7 → w(2) = [tex] 2^{x2} = -7[/tex]
So, therefore the value of "x" would have to be "3" 

The value of [tex]x[/tex] is 3.

Given:

The given equation is:

[tex]4^x-2^x=56[/tex]

To find:

The value of [tex]x[/tex].

Explanation:

The given equation can be rewritten as:

[tex](2^2)^x-2^x-56=0[/tex]

[tex](2^x)^2-2^x-56=0[/tex]

Substitute [tex]2^x=t[/tex] in the above equation.

[tex]t^2-t-56=0[/tex]

Split the middle term.

[tex]t^2-8t+7t-56=0[/tex]

[tex]t(t-8)+7(t-8)=0[/tex]

[tex](t-8)(t+7)=0[/tex]

[tex]t=8,-7[/tex]

Now,

[tex]2^x=8[/tex]

[tex]2^x=2^3[/tex]

[tex]x=3[/tex]

And,

[tex]2^x=-7[/tex]

This statement is not true for any real number [tex]x[/tex].

Therefore, the only real value of [tex]x[/tex] is 3.

Learn more:

https://brainly.com/question/19956884

ACCESS MORE