What is the slope of line segment EF?
A. 1/3
B. 3/2
C. 2/3
D. -3/2

Answer : The correct option is, (B) [tex]\frac{3}{2}[/tex]
Step-by-step explanation:
The formula used for slope is:
[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]
where,
m = slope
[tex]x_1[/tex] and [tex]x_2[/tex] are the coordinates of x-axis
[tex]y_1[/tex] and [tex]y_2[/tex] are the coordinates of y-axis
From the graph we conclude that:
[tex]x_1[/tex] and [tex]x_2[/tex] are (-2) and (2) respectively.
[tex]y_1[/tex] and [tex]y_2[/tex] are (-4) and (2) respectively.
Now put all the given values in the above formula of slope, we get:
[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]
[tex]m=\frac{(2-(-4))}{(2-(-2))}[/tex]
[tex]m=\frac{(2+4)}{(2+2)}[/tex]
[tex]m=\frac{6}{4}[/tex]
[tex]m=\frac{3}{2}[/tex]
Therefore, the slope of line segment EF is, [tex]\frac{3}{2}[/tex]