Answer:
Step-by-step explanation:
[tex]\displaystyle u_1+u_2+u_3+...+u_{13}=\sum_{i=1}^{13}u_i=\dfrac{(u_1+u_{13})*13}{2} \\=\dfrac{(u_1+u_1+12*d)*13}{2} \\=(u_1+6d)*13=312\\\\u_1+6d=24\ (1) \\\\----------------------------\\\displaystyle u_{14}+u_{15}+u_{16}+...+u_{26}=\sum_{i=14}^{26}u_i=\dfrac{(u_{14}+u_{26})*13}{2} \\=\dfrac{(u_1+13*d+u_1+25*d)*13}{2} \\=(u_1+19d)*13=819\\\\u_1+19d=63\ (2)\\\\(2)-(1) ==> 13d=39 ==> d=3\\\\u_1=24-6*3=6\\\\S_{40}=2580[/tex]