Respuesta :
A line can be divided in segment using ratios. The point at which a line is divided in ratios is calculated using: [tex](\frac{ax_2+bx_1}{a+b},\frac{ay_2+by_1}{a+b})[/tex].
- When [tex]n = 4[/tex], the coordinates of K is [tex](3, -5.5)[/tex]
- The general formula of K for any n is: [tex]K = [\frac{4n - 4}{n},\frac{-2-5n}{n}][/tex]
Given that:
[tex]J(x_1,y_1) = (4,-5)[/tex]
[tex]L(x_2,y_2) = (0,-7)[/tex]
The coordinate of K is:
[tex]K = \frac{1}{n}[/tex] from J to L
When [tex]n =4[/tex], we have:
[tex]K_1 = \frac 14[/tex] ---- From J to K
[tex]K_2 = 1 - \frac 14[/tex]
[tex]K_2 = \frac 34[/tex] ---- From K to L
Express as ratio
[tex]K_1 : K_2=1/4:3/4[/tex]
Cancel out 4
[tex]K_1 : K_2=1:3[/tex]
Express properly
[tex]a:b =1:3[/tex]
So, the coordinates of K when [tex]n =4[/tex] is calculated using the following line ratio formula.
[tex]K = [\frac{ax_2+bx_1}{a+b},\frac{ay_2+by_1}{a+b}][/tex]
So, we have:
[tex]K = [\frac{1 \times 0+3 \times 4}{1+3},\frac{1 \times -7+3 \times -5}{1+3}][/tex]
[tex]K = [\frac{12}{4},\frac{-22}{4}][/tex]
[tex]K = [3,-5.5][/tex]
Hence, the coordinates of K when [tex]n =4[/tex] is [tex](3,-5.5)[/tex]
The formula for K coordinates for any value of n is as follows:
We have:
[tex]K = [\frac{ax_2+bx_1}{a+b},\frac{ay_2+by_1}{a+b}][/tex]
Where:
[tex]n = a+b[/tex]
and
[tex]a = 1[/tex]
So, the equation becomes
[tex]K = [\frac{ax_2+bx_1}{n},\frac{ay_2+by_1}{n}][/tex]
Substitute [tex]a = 1[/tex] in [tex]n = a+b[/tex]
[tex]n = 1 + b[/tex]
Make b the subject
[tex]b =n-1[/tex]
Substitute [tex]b =n-1[/tex] and [tex]a = 1[/tex] in [tex]K = [\frac{ax_2+bx_1}{n},\frac{ay_2+by_1}{n}][/tex]
[tex]K = [\frac{1 \times x_2+(n - 1) \times x_1}{n},\frac{1 \times y_2+(n - 1) \times y_1}{n}][/tex]
Substitute [tex]J(x_1,y_1) = (4,-5)[/tex] and [tex]L(x_2,y_2) = (0,-7)[/tex]
[tex]K = [\frac{1 \times 0+(n - 1) \times 4}{n},\frac{1 \times -7+(n - 1) \times -5}{n}][/tex]
[tex]K = [\frac{4(n - 1)}{n},\frac{-7-5(n - 1)}{n}][/tex]
[tex]K = [\frac{4n - 4}{n},\frac{-7-5n + 5}{n}][/tex]
Collect like terms
[tex]K = [\frac{4n - 4}{n},\frac{-7 + 5-5n}{n}][/tex]
[tex]K = [\frac{4n - 4}{n},\frac{-2-5n}{n}][/tex]
Hence, the general formula of K for any n is:
[tex]K = [\frac{4n - 4}{n},\frac{-2-5n}{n}][/tex]
Read more about line ratios at:
https://brainly.com/question/3148758