Respuesta :

Answer:

The mass of the lamina is 1

Step-by-step explanation:

Let [tex]\rho(x,y)[/tex] be a continuous density function of a lamina in the plane region D,then the mass of the lamina is given by:

[tex]m=\int\limits \int\limits_D \rho(x,y) \, dA[/tex].

From the question, the given density function is [tex]\rho (x,y)=xye^{x+y}[/tex].

Again, the lamina occupies a rectangular region: D={(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

The mass of the lamina can be found by evaluating the double integral:

[tex]I=\int\limits^1_0\int\limits^1_0xye^{x+y}dydx[/tex].

Since D is a rectangular region, we can apply Fubini's Theorem to get:

[tex]I=\int\limits^1_0(\int\limits^1_0xye^{x+y}dy)dx[/tex].

Let the inner integral be: [tex]I_0=\int\limits^1_0xye^{x+y}dy[/tex], then

[tex]I=\int\limits^1_0(I_0)dx[/tex].

The inner integral is evaluated using integration by parts.

Let [tex]u=xy[/tex], the partial derivative of u wrt y is

[tex]\implies du=xdy[/tex]

and

[tex]dv=\int\limits e^{x+y} dy[/tex], integrating wrt y, we obtain

[tex]v=\int\limits e^{x+y}[/tex]

Recall the integration by parts formula:[tex]\int\limits udv=uv- \int\limits vdu[/tex]

This implies that:

[tex]\int\limits xye^{x+y}dy=xye^{x+y}-\int\limits e^{x+y}\cdot xdy[/tex]

[tex]\int\limits xye^{x+y}dy=xye^{x+y}-xe^{x+y}[/tex]

[tex]I_0=\int\limits^1_0 xye^{x+y}dy[/tex]

We substitute the limits of integration and evaluate to get:

[tex]I_0=xe^x[/tex]

This implies that:

[tex]I=\int\limits^1_0(xe^x)dx[/tex].

Or

[tex]I=\int\limits^1_0xe^xdx[/tex].

We again apply integration by parts formula to get:

[tex]\int\limits xe^xdx=e^x(x-1)[/tex].

[tex]I=\int\limits^1_0xe^xdx=e^1(1-1)-e^0(0-1)[/tex].

[tex]I=\int\limits^1_0xe^xdx=0-1(0-1)[/tex].

[tex]I=\int\limits^1_0xe^xdx=0-1(-1)=1[/tex].

No unit is given, therefore the mass of the lamina is 1.

RELAXING NOICE
Relax