[tex]\textbf{A}×\textbf{B}= 68\hat{\textbf{i}} + 52\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
Explanation:
Given:
[tex]\textbf{A} = 5\hat{\textbf{i}} - 7\hat{\textbf{j}} - 3\hat{\textbf{k}}[/tex]
[tex]\textbf{B} = -4\hat{\textbf{i}} + 4\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
The cross product [tex]\textbf{A}×\textbf{B}[/tex] is given by
[tex]\textbf{A}×\textbf{B} = \left|\begin{array}{ccc}\hat{\textbf{i}} & \hat{\textbf{j}} & \hat{\textbf{k}} \\\:\:5 & -7 & -3 \\ -4 & \:\:4 & -8 \\ \end{array}\right|[/tex]
[tex]= \left|\begin{array}{cc}-7 & -3\\\:4 & -8\\ \end{array}\right|\:\hat{\textbf{i}}\:+\:\left|\begin{array}{cc}-3 & \:\:5\\-8 & -4\\ \end{array}\right|\:\hat{\textbf{j}}\:+\: \left|\begin{array}{cc}\:\:5 & -7\\-4 & \:\:4\\ \end{array}\right|\:\hat{\textbf{k}}[/tex]
[tex]= 68\hat{\textbf{i}} + 52\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]