A 1 liter solution contains 0.370 M hypochlorous acid and 0.493 M sodium hypochlorite. Addition of 0.092 moles of barium hydroxide will: (Assume that the volume does not change upon the addition of barium hydroxide.)

Respuesta :

In the original solution you have the mixture of a weak acid (Hypochlorous acid) and its conjugate base (Sodium hypochlorite). That is a buffer.

The barium hydroxide will react with hypochlorous acid. If this reaction cause the complete reaction of hypochlorous acid, the buffer break its capacity and the pH change in several units. In this case:

The addition of barium hydroxide will raise the pH slightly because the buffer still working.

The initial moles of those species are:

Hypochlorous acid:

[tex]1L * \frac{0.370mol}{1L} = 0.370 moles[/tex]

Sodium hypochlorite:

[tex]1L * \frac{0.493mol}{1L} = 0.493 moles[/tex]

Now, a strong acid as barium hydroxide (Ba(OH)₂) reacts with a weak acid as hypochlorous acid (HClO) as follows:

Ba(OH)₂ + 2HClO → Ba(ClO)₂ + 2H₂O

For a complete reaction of 0.092 moles of barium hydroxide are required:

[tex]0.092 moles Ba(OH)_2*\frac{2mol HClO}{1molBa(OH)_2} = 0.184 moles HClO[/tex]

As there are 0.370 moles, the moles of HClO after the reaction are:

0.370 moles - 0.184 moles = 0.186 moles of HClO will remain

As you still have hypochlorite and hypochlorous acid you still have a buffer.

Thus, the pH will raise slightly because the amount of acid is decreasing and slightly because the buffer can keep the pH.

Learn more about buffers in:

https://brainly.com/question/24302294

ACCESS MORE
EDU ACCESS