Let h(x)=20e^kx where k ɛ R (Picture attached. Thank you so much!)

Answer:
A)
[tex]k=0[/tex]
B)
[tex]\displaystyle \begin{aligned} 2k + 1& = 2\ln 20 + 1 \\ &\approx 2.3863\end{aligned}[/tex]
C)
[tex]\displaystyle \begin{aligned} k - 3&= \ln \frac{1}{2} - 3 \\ &\approx-3.6931 \end{aligned}[/tex]
Step-by-step explanation:
We are given the function:
[tex]\displaystyle h(x) = 20e^{kx} \text{ where } k \in \mathbb{R}[/tex]
A)
Given that h(1) = 20, we want to find k.
h(1) = 20 means that h(x) = 20 when x = 1. Substitute:
[tex]\displaystyle (20) = 20e^{k(1)}[/tex]
Simplify:
[tex]1= e^k[/tex]
Anything raised to zero (except for zero) is one. Therefore:
[tex]k=0[/tex]
B)
Given that h(1) = 40, we want to find 2k + 1.
Likewise, this means that h(x) = 40 when x = 1. Substitute:
[tex]\displaystyle (40) = 20e^{k(1)}[/tex]
Simplify:
[tex]\displaystyle 2 = e^{k}[/tex]
We can take the natural log of both sides:
[tex]\displaystyle \ln 2 = \underbrace{k\ln e}_{\ln a^b = b\ln a}[/tex]
By definition, ln(e) = 1. Hence:
[tex]\displaystyle k = \ln 2[/tex]
Therefore:
[tex]2k+1 = 2\ln 2+ 1 \approx 2.3863[/tex]
C)
Given that h(1) = 10, we want to find k - 3.
Again, this meas that h(x) = 10 when x = 1. Substitute:
[tex]\displaystyle (10) = 20e^{k(1)}[/tex]
Simplfy:
[tex]\displaystyle \frac{1}{2} = e^k[/tex]
Take the natural log of both sides:
[tex]\displaystyle \ln \frac{1}{2} = k\ln e[/tex]
Therefore:
[tex]\displaystyle k = \ln \frac{1}{2}[/tex]
Therefore:
[tex]\displaystyle k - 3 = \ln\frac{1}{2} - 3\approx-3.6931[/tex]