ANSWER:
0.5947
STEP-BY-STEP EXPLANATION:
Given:
p = 0.7
n = 15
Calculate the probability with the following formula:
[tex]P=nCx\cdot p^x\cdot(1-p)^{n-x}[/tex]In this case 10 ≤ x ≤ 12
[tex]\begin{gathered} P(10\le x\le12)=P(x=10)+P(x=11)+P(x=12) \\ P(x=10)=15C10\cdot0.7^{10}\cdot(1-0.7)^{15-10}=\frac{15!}{10!\cdot(15-10)!}\cdot0.7^{10}\cdot(0.3)^5=0.2061 \\ P(x=11)=15C11\cdot0.7^{11}\cdot(1-0.7)^{15-11}=\frac{15!}{11!\cdot(15-11)!}\cdot0.7^{11}\cdot(0.3)^4=0.2186 \\ P(x=12)=15C12\cdot0.7^{12}\cdot(1-0.7)^{15-12}=\frac{15!}{12!\cdot(15-12)!}\cdot0.7^{12}\cdot(0.3)^3=0.1700 \\ P(10\le x\le12)=0.2061+0.2186+0.1700 \\ P(10\le x\le12)=0.5947 \end{gathered}[/tex]The probability is 0.5947