please prove it
(full steps required)
(No spam answers)

Answer:
Step-by-step explanation:
It's given in the question,
[tex]2^x=3^y=12^z[/tex]
[tex]2^x=12^z[/tex]
[tex]\text{log}2^x}=\text{log}12^z}[/tex]
[tex]x\text{log2}=z\text{log12}[/tex]
[tex]x=\frac{z\text{log}12}{\text{log2}}[/tex]
[tex]3^y=12^z[/tex]
[tex]\text{log}3^y}=\text{log}12^z}[/tex]
[tex]y\text{log}3}=z\text{log}12}[/tex]
[tex]y=\frac{z\text{log12}}{\text{log}3}[/tex]
Now substitute the values in the equation,
[tex]\frac{1}{y}+\frac{2}{y} =\frac{1}{\frac{z\text{log12}}{\text{log}3}}+\frac{2}{\frac{z\text{log}12}{\text{log2}}}[/tex]
[tex]=\frac{\text{log}3}{z\text{log}12}+\frac{2\text{log}2}{z\text{log}12}[/tex]
[tex]=\frac{\text{log}3+\text{log}2^2}{z\text{log}12}[/tex]
[tex]=\frac{\text{log}(3\times 2^2)}{z\text{log}12}[/tex]
[tex]=\frac{\text{log}(12)}{z\text{log}12}[/tex]
[tex]=\frac{1}{z}[/tex]
Hence proved.