Solution :
Given information :
A sample of n = 10 adults
The mean failure was 24 and the standard deviation was 3.2
a). The formula to calculate the 95% confidence interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times \frac{s}{\sqrt n}$[/tex]
Here, [tex]$t_{\alpha/2,n-1} = t_{0.05/2,10-1}$[/tex]
= 2.145
Substitute the values
[tex]$24 \pm 2.145 \times \frac{3.2}{\sqrt {10}}$[/tex]
(26.17, 21.83)
When the [tex]\text{sampling of the same size}[/tex] is repeated from the [tex]\text{population}[/tex] [tex]n[/tex] infinite number of [tex]\text{times}[/tex], and the [tex]\text{confidence intervals}[/tex] are constructed, then [tex]95\%[/tex] of them contains the [tex]\text{true value of the population mean}[/tex], μ in between [tex](26.17, 21.83)[/tex]
b). The formula to calculate 95% prediction interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times s \sqrt{1+\frac{1}{n}}$[/tex]
[tex]$24 \pm 2.145 \times 3.2 \sqrt{1+\frac{1}{10}}$[/tex]
(31.13, 16.87)