Answer:
The volume of the solid = π²
Step-by-step explanation:
As per the given data of the questions,
The diameter of each disk is
D = 2 sin(x) - 2 cos(x)
So its radius is
R = sin(x) - cos(x).
The area of each disk is
[tex]= \pi \times(sinx-cosx)^{2}[/tex]
[tex]= \pi \times [sin^{2}(x) - 2 sin(x) cos(x) + cos^{2}(x)][/tex]
[tex]= \pi[1-2sin(x)cos(x)][/tex]
[tex]= \pi[1-sin(2x)][/tex]
Now,
Integrate from [tex]x=\frac{\pi}{4}\ \ \ to\ \ \ x=\frac{5\pi}{4}[/tex], we get volume:
[tex]V=\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \pi[1-sin(2x)]dx[/tex]
After integrate without limit we get
[tex]V=\pi[x+\frac{cos2x}{2}][/tex]
Now after putting the limit, we get
V = π²
Hence, the required volume of the solid = π²