Respuesta :

Answer:

C. x⁴ + 6·x³ - 12·x  - 72

Explanation:

The given functions are;

[tex]f(x) =\sqrt{x^2 + 12 \cdot x + 36}[/tex]

g(x) = x³ -12

We have that [tex]f(x) =\sqrt{x^2 + 12 \cdot x + 36}[/tex] = [tex]f(x) =\sqrt{(x + 6)^2}[/tex] =  (x + 6)

Therefore;

f(x)·g(x) = [tex]\sqrt{x^2 + 12 \cdot x + 36}[/tex] × (x³ - 12) = (x + 6) × (x³ - 12)

(x + 6) × (x³ - 12) = x⁴ - 12·x + 6·x³ - 72 = x⁴ + 6·x³ - 12·x  - 72

∴ f(x)·g(x) = [tex]\sqrt{x^2 + 12 \cdot x + 36}[/tex] × (x³ - 12) = x⁴ + 6·x³ - 12·x  - 72