Respuesta :

Answer:

Step-by-step explanation:

By applying cosine rule in the given triangle,

c² = a² + b²-2abcosC

c² = (5.6)² + (10.7)² - 2(5.6)(10.7)cos(109.3°)

c² = 185.46

c = 13.6 km

By applying sine rule in the given triangle ABC,

[tex]\frac{\text{sin}A}{a}= \frac{\text{sin}B}{b}= \frac{\text{sin}C}{c}[/tex]

[tex]\frac{\text{sin}A}{5.6}=\frac{\text{sin}B}{10.7}=\frac{\text{sin}109.3}{13.6}[/tex]

[tex]\frac{\text{sin}B}{10.7}=\frac{\text{sin}109.3}{13.6}[/tex]

sin(B) = [tex]\frac{10.7\times \text{sin}(109.30)}{13.6}[/tex]

         = 0.7425

B = [tex]\text{sin}^{-1}(0.7425)[/tex]

B = 48.0°

[tex]\frac{\text{sin}A}{5.6}=\frac{\text{sin}109.3}{13.6}[/tex]

sin(A) = [tex]\frac{[\text{sin}(109.3)]\times (5.6)}{13.6}[/tex]

         = 0.3886

A = [tex]\text{sin}^{-1}(0.3886)[/tex]

A = 22.9°

Ver imagen eudora