Simplify completely..........

Answer:
[tex]\frac{x}{x-1}[/tex]
Step-by-step explanation:
[tex]\frac{3x^2 - 1}{x^2 - 1} - \frac{2x + 1}{x + 1}[/tex] [tex][ \ x^ 2- 1 = (x-1)(x + 1) \ ][/tex]
[tex]= \frac{3x^2 - 1}{(x-1)(x + 1 )} - \frac{2x + 1}{x + 1}\\\\=\frac{(3x^2 - 1)-(2x + 1)(x-1)}{(x + 1)(x-1)}[/tex] [tex][\ Taking \ LCM \ ][/tex]
[tex]= \frac{(3x^2 - 1)- (2x^2 - 2x + x - 1)}{(x+1)(x-1)}\\\\=\frac{3x^2 - 1 - 2x^2 + x + 1 }{(x+1)(x-1)}\\\\=\frac{x^2 +x}{(x+1)(x-1)}\\\\=\frac{x(x+1)}{(x+1)(x-1)}\\\\=\frac{x}{x-1}[/tex]
Finding LCM :
Example :
[tex]\frac{1}{6} + \frac{1}{3}[/tex]
6 = 2 x 3
3 = 1 x 3
[tex]\frac{1}{2 \times 3} + \frac{1}{ 3}[/tex] [tex]= \frac{1}{2 \times 3} + \frac{1 \times 2}{ 3 \times 2}[/tex]
[ To make the denominators same : the second fraction is multiplied and divided by 2 ]
Similarly :
[tex](x^2 - 1 ) = (x -1)(x+1)\\\\(x + 1) = 1 \times (x + 1)[/tex]
Same rule we applied : multiplied the numerator and denominator of the second term with ( x - 1 )
Therefore the second term becomes ,
[tex]\frac{2x + 1}{x + 1} = \frac{(2x + 1)(x - 1)}{(x + 1)( x - 1)}[/tex]