Respuesta :

Answer:

1.) 9.2

2.)

625

633

the dealer

8.81

Step-by-step explanation:

I'm gonna assume that cm= compounded monthly

1.)

effective rate: .153/12= .01275

x= payments

[tex]2590.67=300*\frac{1-(1+.01275)^{-x}}{.01275}\\.110103476=1-1.01275^{-x}\\.889896525=1.01275^{-x}\\\log_{1.01275}.889896525=-x\\x=9.207[/tex]

2.)

If there is no interest rate attached to financing through the deal the payment is just

37500/60 = 625

The monthly payment from the bank has a present value of 37500-3000=34500

and the effective rate is .039/12= .00325

[tex]34500=x\frac{1-(1.00325)^{-60}}{.00325}\\34500=54.43234738x\\x=633.81[/tex]

Finally, the amount we save is just the difference

633.81-625=8.81

Answer:

1.) 9.2

2.)

625

633

the dealer

8.81

Step-by-step explanation:

I'm gonna assume that cm= compounded monthly

1.)

effective rate: .153/12= .01275

x= payments

\begin{gathered}2590.67=300*\frac{1-(1+.01275)^{-x}}{.01275}\\.110103476=1-1.01275^{-x}\\.889896525=1.01275^{-x}\\\log_{1.01275}.889896525=-x\\x=9.207\end{gathered}

2590.67=300∗

.01275

1−(1+.01275)

−x

.110103476=1−1.01275

−x

.889896525=1.01275

−x

log

1.01275

.889896525=−x

x=9.207

2.)

If there is no interest rate attached to financing through the deal the payment is just

37500/60 = 625

The monthly payment from the bank has a present value of 37500-3000=34500

and the effective rate is .039/12= .00325

\begin{gathered}34500=x\frac{1-(1.00325)^{-60}}{.00325}\\34500=54.43234738x\\x=633.81\end{gathered}

34500=x

.00325

1−(1.00325)

−60

34500=54.43234738x

x=633.81

Finally, the amount we save is just the difference

633.81-625=8.81

ACCESS MORE