Respuesta :
Answer:
[tex]( {x}^{2} + 16x + 64) - (x + 8)(x - 4) = k(x + 8) \\ ( {x + 8)}^{2} - (x + 8)(x - 4) = k(x + 8) \\ (x + 8) - (x - 4) = k \\ k = (x - x) + (8 + 4) \\ k = 12[/tex]
Answer:
Step-by-step explanation:
a² + 2ab + b² = (a + b)²
2ab = 2 * x * 8 = 16x
x² + 16x + 64 = x² + 2* x * 8 + 8²
= (x + 8)²
x² + 16x + 8 - (x +8)(x - 4) = (x+8)² - (x+ 8) (x -4)
= (x +8)(x +8) - (x + 8)(x - 4)
(x +8 ) is common in both terms
= (x + 8) [ (x + 8) - (x - 4) ]
= (x + 8) [ x + 8 - x + 4 ]
{Combine like terms. so x + (-x ) = 0 and 8 +4 = 12}
= (x + 8) [ 12]
k = 12