Respuesta :

Answer:

[tex]x = 5[/tex]

Step-by-step explanation:

Given

[tex]\triangle JDC[/tex] similar to [tex]\triangle JKL[/tex]

Required

Find x

To do this, we make use of the following equivalent ratios

[tex]JK:JL = JD:JC[/tex]

This gives

[tex]98 : 63 = 7x + 7:27[/tex]

Express as fraction

[tex]\frac{98 }{ 63} =\frac{ 7x + 7}{27}[/tex]

Multiply both sides by 27

[tex]27 * \frac{98 }{ 63} =\frac{ 7x + 7}{27} * 27[/tex]

[tex]27 * \frac{98 }{ 63} =7x + 7[/tex]

[tex]3* \frac{98 }{ 7} =7x + 7[/tex]

[tex]3* 14 =7x + 7[/tex]

[tex]42 =7x + 7[/tex]

Collect like terms

[tex]7x = 42 - 7[/tex]

[tex]7x = 35[/tex]

Divide both sides by 7

[tex]x = 5[/tex]