Respuesta :

Given:

In a right angle triangle,

Length of legs are x and 7.

Length of hypotenuse = y

Measure of angle between leg 7 and hypotenuse = 33 degrees.

To find:

The value of x and y.

Solution:

In a right angle,

[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]

[tex]\tan (33^\circ)=\dfrac{x}{7}[/tex]

[tex]7\times \tan (33^\circ)=x[/tex]

[tex]7\times 0.6494=x[/tex]

[tex]4.5458=x[/tex]

Approximate the value to the nearest tenth.

[tex]x\approx 4.5[/tex]

In a right angle triangle,

[tex]\cos \theta=\dfrac{Base}{Hypotenuse}[/tex]

[tex]\cos (33^\circ)=\dfrac{7}{y}[/tex]

[tex]y=\dfrac{7}{\cos (33^\circ)}[/tex]

[tex]y=\dfrac{7}{0.83867}[/tex]

[tex]y=8.34655[/tex]

Approximate the value to the nearest tenth.

[tex]y\approx 8.3[/tex]

Therefore, the correct option is D.

ACCESS MORE
EDU ACCESS
Universidad de Mexico