Find the value of the variable. Round decimal to nearest tenth if necessary.

Given:
In a right angle triangle,
Length of legs are x and 7.
Length of hypotenuse = y
Measure of angle between leg 7 and hypotenuse = 33 degrees.
To find:
The value of x and y.
Solution:
In a right angle,
[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]
[tex]\tan (33^\circ)=\dfrac{x}{7}[/tex]
[tex]7\times \tan (33^\circ)=x[/tex]
[tex]7\times 0.6494=x[/tex]
[tex]4.5458=x[/tex]
Approximate the value to the nearest tenth.
[tex]x\approx 4.5[/tex]
In a right angle triangle,
[tex]\cos \theta=\dfrac{Base}{Hypotenuse}[/tex]
[tex]\cos (33^\circ)=\dfrac{7}{y}[/tex]
[tex]y=\dfrac{7}{\cos (33^\circ)}[/tex]
[tex]y=\dfrac{7}{0.83867}[/tex]
[tex]y=8.34655[/tex]
Approximate the value to the nearest tenth.
[tex]y\approx 8.3[/tex]
Therefore, the correct option is D.