Answer:
[tex]\\\\\frac{P^3 \ + \ 1}{P^3} = 0[/tex]
Step-by-step explanation:
Given;
[tex]\frac{P-1 }{P} = 2\\\\From \ the \ equation \ above \ we \ determine \ the \ value \ of \ p \ as \ follows;\\\\P-1 = 2P\\\\P-2P = 1\\\\-P = 1\\\\P = -1[/tex]
[tex]Now\ solving \ the \ given \ question;\\\\\frac{P^3 \ + \ 1}{P^3} \\\\Substitute \ the \ value \ of \ "P" \ into \ the \ equation;\\\\\frac{P^3 \ + \ 1}{P^3} = \frac{(-1)^3 \ + \ 1}{(-1)^3} = \frac{-1 \ + \ 1}{-1} = \frac{0}{-1} = 0[/tex]