Answer:
The answer is "As [tex]Q=336[/tex], at high-temperature [tex]\Delta G_{rxn}>0[/tex] and When[tex]K>1,[/tex][tex]\Delta G^{\circ}_{rxn}>0[/tex]."
Explanation:
The equation for the reaction is:
[tex]A(g) \leftrightharpoons B(g)[/tex]
[tex]K=5.8\\\\Q=336[/tex]
At equilibrium,
[tex]\Delta G^{\circ}_{rxn}>0[/tex][tex]=-RT \ln \ K[/tex]
When k=5.8(>1), the value of [tex]\ln k[/tex] would be positive
So, [tex]\Delta G^{\circ}_{rxn}[/tex] is negative (< 0)
So if K > l, [tex]\Delta G^{\circ}_{rxn}<0[/tex]
If the reaction is not in equilibrium so the equation is :
[tex]\Delta G_{rxn}>0[/tex]=[tex]\Delta G^{\circ}_{rxn}[/tex][tex]+RT \ln Q[/tex]
Substituting the expression:
[tex]\Delta G_{rxn}>0[/tex][tex]= (-RT \ln K) + RT \ln Q[/tex]
[tex]= RT(\ln Q- \ln K)\\= RT(\ln (336)-\ln (5.8))\\= RT(4.06)[/tex]
It is the positive value for all temperatures.
So, As Q = 336, at the high temperature [tex]\Delta G_{rxn}>0[/tex].