The volume,
[tex]V = \frac{m}{\rho}[/tex]
Here, m is mass and [tex]\rho[/tex] is density.
Given, [tex]m = 106.5 g[/tex] and [tex]\rho = 13.6 \ g/mL[/tex].
Substituting these values in above equation, we get
[tex]V = \frac{106.5 \ g}{13.6 \ g/mL} = 7.8 \ mL[/tex].
As the volume of cylinder,
[tex]V= \pi r^2 h[/tex]
Given, [tex]h =10.8 \ cm[/tex]
Therefore,
[tex]7.8 \ mL = 3.14 \times r^2 \times 10.8 \ cm \\\\ r^2 = \frac{7.8}{3.14 \times 10.8} = 0.2 cm^2 \\\\ r = 0.5 cm[/tex]
We know, the inner diameter of cylindrical tube is the twice the radius,
[tex]D = 2 r = 2 \times 0.5 cm = 1 \ cm[/tex]