Answer:
The ratio of the drag coefficients [tex]\dfrac{F_m}{F_p}[/tex] is approximately 0.0002
Step-by-step explanation:
The given Reynolds number of the model = The Reynolds number of the prototype
The drag coefficient of the model, [tex]c_{m}[/tex] = The drag coefficient of the prototype, [tex]c_{p}[/tex]
The medium of the test for the model, [tex]\rho_m[/tex] = The medium of the test for the prototype, [tex]\rho_p[/tex]
The drag force is given as follows;
[tex]F_D = C_D \times A \times \dfrac{\rho \cdot V^2}{2}[/tex]
We have;
[tex]L_p = \dfrac{\rho _p}{\rho _m} \times \left(\dfrac{V_p}{V_m} \right)^2 \times \left(\dfrac{c_p}{c_m} \right)^2 \times L_m[/tex]
Therefore;
[tex]\dfrac{L_p}{L_m} = \dfrac{\rho _p}{\rho _m} \times \left(\dfrac{V_p}{V_m} \right)^2 \times \left(\dfrac{c_p}{c_m} \right)^2[/tex]
[tex]\dfrac{L_p}{L_m} =\dfrac{17}{1}[/tex]
[tex]\therefore \dfrac{L_p}{L_m} = \dfrac{17}{1} =\dfrac{\rho _p}{\rho _p} \times \left(\dfrac{V_p}{V_m} \right)^2 \times \left(\dfrac{c_p}{c_p} \right)^2 = \left(\dfrac{V_p}{V_m} \right)^2[/tex]
[tex]\dfrac{17}{1} = \left(\dfrac{V_p}{V_m} \right)^2[/tex]
[tex]\dfrac{F_p}{F_m} = \dfrac{c_p \times A_p \times \dfrac{\rho_p \cdot V_p^2}{2}}{c_m \times A_m \times \dfrac{\rho_m \cdot V_m^2}{2}} = \dfrac{A_p}{A_m} \times \dfrac{V_p^2}{V_m^2}[/tex]
[tex]\dfrac{A_m}{A_p} = \left( \dfrac{1}{17} \right)^2[/tex]
[tex]\dfrac{F_p}{F_m} = \dfrac{A_p}{A_m} \times \dfrac{V_p^2}{V_m^2}= \left (\dfrac{17}{1} \right)^2 \times \left( \left\dfrac{17}{1} \right) = 17^3[/tex]
[tex]\dfrac{F_m}{F_p} = \left( \left\dfrac{1}{17} \right)^3[/tex]= (1/17)^3 ≈ 0.0002
The ratio of the drag coefficients [tex]\dfrac{F_m}{F_p}[/tex] ≈ 0.0002.