(a)
[tex]\displaystyle\int_3^\infty \frac{\mathrm dx}{x^2+9}=\lim_{b\to\infty}\int_{x=3}^{x=b}\frac{\mathrm dx}{x^2+9}[/tex]
Substitute x = 3 tan(t ) and dx = 3 sec²(t ) dt :
[tex]\displaystyle\lim_{b\to\infty}\int_{t=\arctan(1)}^{t=\arctan\left(\frac b3\right)}\frac{3\sec^2(t)}{(3\tan(t))^2+9}\,\mathrm dt=\frac13\lim_{b\to\infty}\int_{t=\arctan(1)}^{t=\arctan\left(\frac b3\right)}\mathrm dt[/tex]
[tex]=\displaystyle \frac13 \lim_{b\to\infty}\left(\arctan\left(\frac b3\right)-\arctan(1)\right)=\boxed{\dfrac\pi{12}}[/tex]
(b) The series
[tex]\displaystyle \sum_{n=3}^\infty \frac1{n^2+9}[/tex]
converges by comparison to the convergent p-series,
[tex]\displaystyle\sum_{n=3}^\infty\frac1{n^2}[/tex]
(c) The series
[tex]\displaystyle \sum_{n=1}^\infty \frac{(-1)^n (n^2+9)}{e^n}[/tex]
converges absolutely, since
[tex]\displaystyle \sum_{n=1}^\infty \left|\frac{(-1)^n (n^2+9)}{e^n}\right|=\sum_{n=1}^\infty \frac{n^2+9}{e^n} < \sum_{n=1}^\infty \frac{n^2}{e^n} < \sum_{n=1}^\infty \frac1{e^n}=\frac1{e-1}[/tex]
That is, ∑ (-1)ⁿ (n ² + 9)/eⁿ converges absolutely because ∑ |(-1)ⁿ (n ² + 9)/eⁿ| = ∑ (n ² + 9)/eⁿ in turn converges by comparison to a geometric series.