Respuesta :

Answer:

[tex]\frac{-1}{3} \ln|4-x^3|+C[/tex] is the answer

if [tex]\int \frac{x^2 dx}{4-x^3}[/tex] or [tex]\int \frac{x^2}{4-x^3} dx[/tex] was the integral.

Step-by-step explanation:

[tex]\int \frac{x^2 dx}{4-x^3}[/tex].

I know the derivative of [tex]x^3[/tex] will give me [tex]3x^2[/tex] and I see the variable part of this in the numerator.

So my subsitution will be [tex]u=4-x^3[/tex] and differentiating both sides gives:

[tex]\frac{du}{dx}=0-3x^2[/tex]

[tex]du=-3x^2 dx[/tex]

I'm going to solve for [tex]x^2 dx[/tex] since that is my numerator.

Divide both sides by -3:

[tex]\frac{-1}{3}du=x^2 dx[/tex]

Inputting my substitution with it's derivative into the integral gives me:

[tex]\int \frac{x^2 }{4-x^3}dx=int \frac{x^2 dx}{4-x^3}[/tex]

with [tex]u=4-x^3[/tex] and [tex]\frac{-1}{3}du=x^2 dx[/tex]:

[tex]\int \frac{-1}{3} du}{u}[/tex]

[tex]\frac{-1}{3} \int \frac{du}{u}[/tex]

[tex]\frac{-1}{3} \int u^{-1} du[/tex]

Don't use power rule.

[tex]\frac{-1}{3} \ln|u|+C[/tex]

Put back in terms of x:

[tex]\frac{-1}{3} \ln|4-x^3|+C[/tex]

Let's check our answer by differentiating it:

[tex]\frac{-1}{3}(\ln|4-x^3|)'[/tex]

[tex]\frac{-1}{3} \cdot \frac{-3x^2}{4-x^3}[/tex]

[tex]\frac{x^2}{4-x^3}[/tex]

We are good. Our check it worked out.

RELAXING NOICE
Relax