A roller coaster car is traveling at a constant 3 m/s when it reaches a downward slope. On the slope, the car accelerates at a constant rate of 4.5 m/sā€‹ 2ā€‹ . The length of the slope is 45 meters. A) Find the velocity of the car at the bottom of the hill. B) Find the time of travel.

Respuesta :

Answer:

Velocity of the car at the bottom of the slope: approximately [tex]20.3\; \rm m \cdot s^{-2}[/tex].

It would take approximately [tex]3.9\; \rm s[/tex] for the car to travel from the top of the slope to the bottom.

Explanation:

The time of the travel needs to be found. Hence, make use of the SUVAT equation that does not include time.

  • Let [tex]v[/tex] denote the final velocity of the car.
  • Let [tex]u[/tex] denote the initial velocity of the car.
  • Let [tex]a[/tex] denote the acceleration of the car.
  • Let [tex]x[/tex] denote the distance that this car travelled.

[tex]v^2 - u^2 = 2\, a\cdot x[/tex].

Given:

  • [tex]u = 3\; \rm m \cdot s^{-1}[/tex].
  • [tex]a = 4.5\; \rm m \cdot s^{-2}[/tex].
  • [tex]x = 45\; \rm m[/tex].

Rearrange the equation [tex]v^2 - u^2 = 2\, a\cdot x[/tex] and solve for [tex]v[/tex]:

[tex]\begin{aligned}v &= \sqrt{2\, a \cdot x + u^2} \\ &= \sqrt{2 \times 4.5\; \rm m \cdot s^{-2} \times 45\; \rm m + \left(3\; \rm m \cdot s^{-1}\right)^{2}} \\ &\approx 20.3\; \rm m \cdot s^{-1}\end{aligned}[/tex].

Calculate the time required for reaching this speed from [tex]u = 3\; \rm m \cdot s^{-1}[/tex] at [tex]a = 4.5\; \rm m \cdot s^{-2}[/tex]:

[tex]\begin{aligned}t &= \frac{v - u}{a} \\ &\approx \frac{20.3\; \rm m \cdot s^{-1} - 3\; \rm m \cdot s^{-1}}{4.5\; \rm m \cdot s^{-2}} \approx 3.9\; \rm m \cdot s^{-1}\end{aligned}[/tex].

ACCESS MORE
EDU ACCESS