Answer:
Velocity of the car at the bottom of the slope: approximately [tex]20.3\; \rm m \cdot s^{-2}[/tex].
It would take approximately [tex]3.9\; \rm s[/tex] for the car to travel from the top of the slope to the bottom.
Explanation:
The time of the travel needs to be found. Hence, make use of the SUVAT equation that does not include time.
[tex]v^2 - u^2 = 2\, a\cdot x[/tex].
Given:
Rearrange the equation [tex]v^2 - u^2 = 2\, a\cdot x[/tex] and solve for [tex]v[/tex]:
[tex]\begin{aligned}v &= \sqrt{2\, a \cdot x + u^2} \\ &= \sqrt{2 \times 4.5\; \rm m \cdot s^{-2} \times 45\; \rm m + \left(3\; \rm m \cdot s^{-1}\right)^{2}} \\ &\approx 20.3\; \rm m \cdot s^{-1}\end{aligned}[/tex].
Calculate the time required for reaching this speed from [tex]u = 3\; \rm m \cdot s^{-1}[/tex] at [tex]a = 4.5\; \rm m \cdot s^{-2}[/tex]:
[tex]\begin{aligned}t &= \frac{v - u}{a} \\ &\approx \frac{20.3\; \rm m \cdot s^{-1} - 3\; \rm m \cdot s^{-1}}{4.5\; \rm m \cdot s^{-2}} \approx 3.9\; \rm m \cdot s^{-1}\end{aligned}[/tex].