If sin x = - 4/5 where pi < x < (3pi)/2 and cos y = 8/17 where 0 < y < n/2 , find any two of the following: either sin(x - y), cos(x - y) , or tan(x - y) .

Respuesta :

The answer is

sin(x-y)= 13/85

cos(x-y)= -36/85

What we know.

[tex] \sin(x) = - \frac{4}{5} [/tex]

[tex] \cos(y) = \frac{8}{17} [/tex]

The intervals mean that all values of x are in the 3rd quadrant. The second one mean that all y values are in the 1st quadrant.

Let find sin( x-y).

[tex] \sin(x - y) = \sin(x) \cos(y) - \cos(x) \sin(y) [/tex]

We can find sin of y.

Remeber that all y values are in the 1st quadrant. This means y is positive.

  • To find y, we know that cos y=8/17.
  • This means that we know the adjacent side/hypotenuse
  • Sine is opposite/hypotenuse.
  • We can find the opposite side by doing pythagorean theorem.
  • [tex] {x}^{2} + {y}^{2} = {r}^{2} [/tex]
  • [tex] {8}^{2} + {y}^{2} + {17}^{2} [/tex]
  • [tex]64 + {y}^{2} = 289[/tex]
  • [tex]y {}^{2} = 225[/tex]
  • [tex]y = 15[/tex]
  • So that means sin of y=15/17

We can find cos x by doing the exact opposite.

We know that sin x=-4/5 so we need to find the adjacent/hypotenuse side.

[tex]( { - 4}{} ) {}^{2} + {y}^{2} = 5 {}^{2} [/tex]

[tex]16 + {y}^{2} = 25[/tex]

[tex] {y}^{2} = 9[/tex]

[tex]y = 3[/tex]

Remember cosine in the 3rd quadrant is negative so

cos x=-3/5.

Plug the values into the earlier formula,

[tex] \sin ( \frac{ - 4}{5} ) \ \cos( \frac{8}{17} ) - \cos( - \frac{3}{5} ) \sin( \frac{15}{17} ) [/tex]

Multiply the fractions then multiply it

[tex] \frac{ - 32}{85} + \frac{45}{85} = \frac{13}{85} [/tex]

For cos(x-y).

Plug in the same ones for earlier,

[tex] \cos(x - y) = \cos(x) \cos(y) + \sin(x) \sin(y) [/tex]

[tex] \cos( \frac{ - 3}{5} ) \cos( \frac{8}{17} ) + \sin( - \frac{4}{5} ) \sin( \frac{15}{17} ) [/tex]

[tex] - \frac{24}{85} - \frac{60}{85} = - \frac { 36}{85} [/tex]

ACCESS MORE