Solution :
The isentropic efficiency of the turbine is given as :
[tex]$\eta = \frac{\text{actual work done}}{\text{isentropic work done}}$[/tex]
[tex]$=\frac{m(h_1-h_2)}{m(h_1-h_{2s})}$[/tex]
[tex]$=\frac{h_1-h_2}{h_1-h_{2s}}$[/tex]
The entropy relation for the isentropic process is given by :
[tex]$0=s^\circ_2-s^\circ_1-R \ln \left(\frac{P_2}{P_1}\right)$[/tex]
[tex]$\ln \left(\frac{P_2}{P_1}\right)=\frac{s^\circ_2-s^\circ_1}{R}$[/tex]
[tex]$ \frac{P_2}{P_1}=exp\left(\frac{s^\circ_2-s^\circ_1}{R}\right)$[/tex]
[tex]$\left(\frac{P_2}{P_1}\right)_{s=constant}=\frac{P_{r2}}{P_{r1}}$[/tex]
Now obtaining the properties from the ideal gas properties of air table :
At [tex]$T_1 = 1600 \ K,$[/tex]
[tex]$P_{r1}=791.2$[/tex]
[tex]$h_1=1757.57 \ kJ/kg$[/tex]
Calculating the relative pressure at state 2s :
[tex]$\frac{P_{r2}}{P_{r1}}=\frac{P_2}{P_1}$[/tex]
[tex]$\frac{P_{r2}}{791.2}=\frac{2.4}{30}$[/tex]
[tex]$P_{r2}=63.296$[/tex]
Obtaining the properties from Ideal gas properties of air table :
At [tex]$P_{r2}=63.296$[/tex], [tex]$T_{2s}\approx 860 \ K$[/tex]
Considering the isentropic relation to calculate the actual temperature at the turbine exit, we get:
[tex]$\eta=\frac{h_1-h_2}{h_1-h_{2s}}$[/tex]
[tex]$\eta=\frac{c_p(T_1-T_2)}{c_p(T_1-T_{2s})}$[/tex]
[tex]$\eta=\frac{T_1-T_2}{T_1-T_{2s}}$[/tex]
[tex]$0.9=\frac{1600-T_2}{1600-860}$[/tex]
[tex]$T_2= 938 \ K$[/tex]
So, at [tex]$T_2= 938 \ K$[/tex], [tex]$h_2=975.66 \ kJ/kg$[/tex]
Now calculating the work developed per kg of air is :
[tex]$w=h_1-h_2$[/tex]
= 1757.57 - 975.66
= 781 kJ/kg
Therefore, the temperature at the exit is 938 K and work developed is 781 kJ/kg.