Answer:
[tex]A" = (3,2)\ \ B" = (-1,1)\ \ C" =(-3,4)\ \ D =(-1,4)[/tex]
Step-by-step explanation:
Given [Missing]
[tex]A = (-3,4)[/tex]
[tex]B = (1,3)[/tex]
[tex]C =(3,6)[/tex]
[tex]D =(1,6)[/tex]
The first transformation: reflection across the y-axis.
The rule is: [tex](x,y)==>(-x,y)[/tex]
So:
[tex]A = (-3,4)[/tex] ==>[tex]A' = (3,4)[/tex]
[tex]B = (1,3)[/tex] ==> [tex]B' = (-1,3)[/tex]
[tex]C =(3,6)[/tex] ==> [tex]C' = (-3.6)[/tex]
[tex]D =(1,6)[/tex] ==> [tex]D' = (-1,6)[/tex]
Translation 2 units down
The rule is: [tex](x,y)==>(x,y-2)[/tex]
So:
[tex]A' = (3,4)[/tex] ==> [tex]A" =(3,4-2) =(3,2)[/tex]
[tex]B' = (-1,3)[/tex] ==> [tex]B" = (-1,3-2) = (-1,1)[/tex]
[tex]C' = (-3.6)[/tex] ==> [tex]C" = (-3,6-2) = (-3,4)[/tex]
[tex]D' = (-1,6)[/tex] ==> [tex]D" =(-1,6-2) = (-1,4)[/tex]
Hence:
[tex]A" = (3,2)\ \ B" = (-1,1)\ \ C" =(-3,4)\ \ D =(-1,4)[/tex]