Step-by-step explanation:
Let x represent theta.
[tex] \sin( \frac{\pi}{4} - x ) [/tex]
Using the angle addition trig formula,
[tex] \sin(x - y) = \sin(x) \cos(y) - \cos(x) \sin(y) [/tex]
[tex] \sin( \frac{\pi}{4} ) \cos(x) - \cos( \frac{\pi}{4} ) \sin(x) [/tex]
[tex]( \frac{ \sqrt{2} }{2}) \cos(x) - (\frac{ \sqrt{2} }{2} )\sin(x) [/tex]
Multiply one side at a time
Replace theta with x , the answer is
[tex] \frac{ \sqrt{2} \cos(x) }{2} - \frac{ \sin(x) \sqrt{2} }{2} [/tex]
2. Convert 30 degrees into radian
[tex] \frac{30}{1} \times \frac{\pi}{180} = \frac{\pi}{6} [/tex]
Using tangent formula,
[tex] \tan(x + y) = \frac{ \tan(x) + \tan(y) }{1 - \tan(x) \tan(y) } [/tex]
[tex] \frac{ \tan(x) + \tan( \frac{\pi}{6} ) }{1 - \tan(x) \tan( \frac{\pi}{6} ) } [/tex]
Tan if pi/6 is sqr root of 3/3
[tex] \frac{ \tan(x) + ( \frac{ \sqrt{3} }{3} ) }{1 - \tan(x) (\frac{ \sqrt{3} }{3} ) } [/tex]
Since my phone about to die if you later simplify that,
you'll get
[tex] \frac{(3 \tan(x) + \sqrt{3} )(3 + \sqrt{3} \tan(x) }{3(3 - \tan {}^{2} (x) } [/tex]
Replace theta with X.