Answer:
planet that is farthest away is planet X
kepler's third law
Explanation:
For this exercise we can use Kepler's third law which is an application of Newton's second law to the case of the orbits of the planets
T² = ([tex]\frac{4\pi ^2}{ G M_s}[/tex] a³ = K_s a³
Let's apply this equation to our case
a = [tex]\sqrt[3]{ \frac{T^2}{K_s} }[/tex]
for this particular exercise it is not necessary to reduce the period to seconds
Plant W
10² = K_s [tex]a_{w}^3[/tex]
a_w = [tex]\sqrt[3]{ \frac{100}{ K_s} }[/tex]
a_w = [tex]\frac{1}{ \sqrt[3]{K_s} }[/tex] 4.64
Planet X
a_x = [tex]\sqrt[3]{ \frac{640^3}{K_s} }[/tex]
a_x = \frac{1}{ \sqrt[3]{K_s} } 74.3
Planet Y
a_y = [tex]\sqrt[3]{ \frac{80^2}{K_s} }[/tex]
a_y = \frac{1}{ \sqrt[3]{K_s} } 18.6
Planet z
a_z = [tex]\sqrt[3]{ \frac{270^2}{K_s} }[/tex]
a_z = \frac{1}{ \sqrt[3]{K_s} } 41.8
From the previous results we see that planet that is farthest away is planet X
where we have used kepler's third law