Answer:
[tex]1290.16\ \text{rad/s}^2[/tex]
Explanation:
[tex]\omega_i[/tex] = Initial angular velocity = 734.1 rad/s
[tex]\omega_f[/tex] = Final angular velocity = 0
t = Time = 0.569 seconds
[tex]\alpha[/tex] = Angular acceleration
From the kinematic equations of rotational motion we have
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\dfrac{0-734.1}{0.569}\\\Rightarrow \alpha=-1290.16\ \text{rad/s}^2[/tex]
The magnitude of the average angular acceleration of the disk is [tex]1290.16\ \text{rad/s}^2[/tex].