Respuesta :

Given:

[tex]\sin (u)=-\dfrac{7}{25}[/tex]

[tex]\cos (v)=-\dfrac{4}{5}[/tex]

To find:

The exact value of cos(u-v) if both angles are in quadrant 3.

Solution:

In 3rd quadrant, cos and sin both trigonometric ratios are negative.

We have,

[tex]\sin (u)=-\dfrac{7}{25}[/tex]

[tex]\cos (v)=-\dfrac{4}{5}[/tex]

Now,

[tex]\cos (u)=-\sqrt{1-\sin^2 (u)}[/tex]

[tex]\cos (u)=-\sqrt{1-(-\dfrac{7}{25})^2}[/tex]

[tex]\cos (u)=-\sqrt{1-\dfrac{49}{625}}[/tex]

[tex]\cos (u)=-\sqrt{\dfrac{625-49}{625}}[/tex]

On further simplification, we get

[tex]\cos (u)=-\sqrt{\dfrac{576}{625}}[/tex]

[tex]\cos (u)=-\dfrac{24}{25}[/tex]

Similarly,

[tex]\sin (v)=-\sqrt{1-\cos^2 (v)}[/tex]

[tex]\sin (v)=-\sqrt{1-(-\dfrac{4}{5})^2}[/tex]

[tex]\sin (v)=-\sqrt{1-\dfrac{16}{25}}[/tex]

[tex]\sin (v)=-\sqrt{\dfrac{25-16}{25}}[/tex]

[tex]\sin (v)=-\sqrt{\dfrac{9}{25}}[/tex]

[tex]\sin (v)=-\dfrac{3}{5}[/tex]

Now,

[tex]\cos (u-v)=\cos u\cos v+\sin u\sin v[/tex]

[tex]\cos (u-v)=\left(-\dfrac{24}{25}\right)\left(-\dfrac{4}{5}\right)+\left(-\dfrac{7}{25}\right)\left(-\dfrac{3}{25}\right)[/tex]

[tex]\cos (u-v)=\dfrac{96}{625}+\dfrac{21}{625}[/tex]

[tex]\cos (u-v)=\dfrac{1 17}{625}[/tex]

Therefore, the value of cos (u-v) is 0.1872.