Respuesta :
Answer:
[tex]\mathbf{ \sqrt{\dfrac{15.7}{4} + \dfrac{10.6}{3}} }[/tex]
Step-by-step explanation:
Given that:
[tex]\overline x_1 =[/tex] the average diameter of 4 randomly select sequoia trunk from giant trees
[tex]\overline{x_2}[/tex] = the average diameter of 3 randomly selected trunk in California trees.
Thus;
sample size [tex]\mathbf{n_1 = 4 \ \ \& \ \ n_2 = 3}[/tex]
Variance:
[tex]\mathbf{\sigma_1^2 = 15.7 }[/tex]
[tex]\mathbf{\sigma_2^2 = 10.6 }[/tex]
Recall that:
[tex]\mathbf {( \overline x_1 - \overline x_2) \sim Normal \Big ( \mu_1 -\mu_2 \ , \ \dfrac{\sigma_1^2}{n_1} + \dfrac{\sigma_12^2}{n_2} \Big )}[/tex]
[tex]\mathbf{Mean ( \overline x_1 - \overline x_2) = \mu_1 - \mu_2}[/tex]
Therefore:
The standard deviation [tex]\mathbf{ \overline x_1 - \overline x_2 = \sqrt{\dfrac{\sigma_1^2}{n_1} + \dfrac{\sigma_2^2}{n_2} } }[/tex]
[tex]\mathbf{ \overline x_1 - \overline x_2 = \sqrt{\dfrac{15.7}{4} + \dfrac{10.6}{3}} }[/tex]
The standard deviation of the sampling distribution of the difference in the sample means is 9.95
The given parameters are:
- Variance: [tex]\sigma_1 ^2 = 15.7[/tex], [tex]\sigma_2 ^2 = 10.6[/tex]
- Sample size: [tex]n_1 = 4[/tex], [tex]n_2 = 3[/tex].
For a normal distribution we have:
[tex]\bar x_1 - \bar x_2 = \sqrt{\frac{\sigma_1^2}{n_1} +\frac{\sigma_2^2}{n_2}}[/tex]
So, the equation becomes
[tex]\bar x_1 - \bar x_2 = \sqrt{\frac{15.7^2}{4} +\frac{10.6^2}{3}}[/tex]
Evaluate the exponents
[tex]\bar x_1 - \bar x_2 = \sqrt{\frac{246.49}{4} +\frac{112.36}{3}}[/tex]
[tex]\bar x_1 - \bar x_2 = \sqrt{61.62+37.45}[/tex]
Evaluate the sums
[tex]\bar x_1 - \bar x_2 = \sqrt{99.07}[/tex]
Evaluate the square roots
[tex]\bar x_1 - \bar x_2 = 9.95[/tex]
Hence, the standard deviation of the sampling distribution of the difference in the sample means is 9.95
Read more about sampling distribution at:
https://brainly.com/question/17218784