Respuesta :

Answer:

[tex]\sqrt{72a^8b^5} = 6a^4b^2 \sqrt{2b}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{72a^8b^5[/tex]

Required

Simplify

Express 72 as 36 * 2

[tex]\sqrt{72a^8b^5} = \sqrt{36 * 2*a^8b^5}[/tex]

Express [tex]b^5[/tex] as [tex]b^4*b[/tex]

[tex]\sqrt{72a^8b^5} = \sqrt{36 * 2*a^8*b^4*b}[/tex]

Reorder

[tex]\sqrt{72a^8b^5} = \sqrt{36 *a^8*b^4* 2*b}[/tex]

Split:

[tex]\sqrt{72a^8b^5} = \sqrt{36} *\sqrt{a^8} *\sqrt{b^4} * \sqrt{2*b}[/tex]

Simplify each term

[tex]\sqrt{72a^8b^5} = 6 * a^{\frac{8}{2}} * b^{\frac{4}{2}} * \sqrt{2*b}[/tex]

[tex]\sqrt{72a^8b^5} = 6 * a^4 * b^2 * \sqrt{2*b}[/tex]

[tex]\sqrt{72a^8b^5} = 6a^4b^2 * \sqrt{2*b}[/tex]

[tex]\sqrt{72a^8b^5} = 6a^4b^2 \sqrt{2b}[/tex]