Answer:
[tex]\frac{dx}{dt}=2-\frac{3}{40}x+\frac{y}{15}[/tex]
[tex]\frac{dy}{dt}=\frac{3}{40}x-\frac{y}{5}[/tex]
x(0)=20,y(0)=5
Step-by-step explanation:
We are given that
Tank A contains water=80 gallons
x(0)=20,y(0)=5
Tank B contains water=30 gallons
Rate=4 gallon/min
Concentration of salt is pumped into tank=0.5 pound /gallon of water
Solution pumped from tank A to tank B at the rate=6 gallons/min
Solution pumped from tank B to tank A at the rate=2gallon/min
Solution from tank B is pumped out of the system at the rate=4 gallon/min
We have to find the DE at time t
For x
Rate in=[tex]0.5\times 4+y(t)/30\times 2[/tex]
Rate in=[tex]2+y/15[/tex]
Rate out=[tex]x/80\times 6[/tex]
Rate out=3x/40[/tex]
[tex]\frac{dx}{dt}=[/tex]Rate in-Rate out
[tex]\frac{dx}{dt}=2+y/15-3x/40[/tex]
[tex]\frac{dx}{dt}=2-\frac{3}{40}x+\frac{y}{15}[/tex]
For y
Rate in=[tex]x/80\times 6[/tex]
Rate in=3/40x
Rate out=[tex]y/30\times (4+2)[/tex]
Rate out=y/5
[tex]\frac{dy}{dt}=[/tex]Rate in-Rate out
[tex]\frac{dy}{dt}=\frac{3}{40}x-\frac{y}{5}[/tex]