Respuesta :

Answer:

c=7

d=5

Step-by-step explanation:

Exponential Equations

We need to recall some properties of exponentials to solve the equations:

[tex]x^a*x^b=x`{a+b}[/tex]

[tex]\displaystyle (x^a)^b=x^{ab}[/tex]

Equation A

[tex]\sqrt{448x^c}=8x^3\sqrt{7x}[/tex]

Squaring:

[tex](\sqrt{448x^c})^2=(8x^3\sqrt{7x})^2[/tex]

Simplifying the radicals:

[tex]448x^c=64x^6(7x)[/tex]

[tex]448x^c=448x^7[/tex]

If follows that

c=7

Equation B

[tex]\sqrt[3]{576x^d}=4x\sqrt[3]{9x^2}[/tex]

Raising to the third power:

[tex](\sqrt[3]{576x^d})^3=(4x\sqrt[3]{9x^2})^3[/tex]

[tex]576x^d=4^3x^3(9x^2)[/tex]

Operating

[tex]576x^d=64x^3(9x^2)=576x^5[/tex]

Thus:

d=5

ACCESS MORE