Respuesta :

Answer:

[tex]\frac{12}{25}[/tex] ↔ sinD × cosD

[tex]\frac{3}{5}[/tex]  ↔ sinC

[tex]\frac{16}{15}[/tex] ↔ cosC × tanD

[tex]\frac{4}{5}[/tex] ↔ sinD

Step-by-step explanation:

In the given triangle CBD

∵ ∠B is a right angle

∴ CD is the hypotenuse

→ We can use the trigonometry ratios

∵ sinC = opposite side of ∠C ÷ hypotenuse

∴ sinC = [tex]\frac{BD}{DC}[/tex]

∵ BD = 3 and CD = 5

∴ sinC = [tex]\frac{3}{5}[/tex]

∵ cosC = adjacent side of ∠C ÷ hypotenuse

∴ cosC = [tex]\frac{BC}{DC}[/tex]

∵ BC = 4 and CD = 5

∴ cosC = [tex]\frac{4}{5}[/tex]

∵ tanC = opposite side of ∠C ÷ adjacent side of ∠C

∴ tanC = [tex]\frac{BD}{BC}[/tex]

∵ BD = 3 and BC = 4

∴ tanC = [tex]\frac{3}{4}[/tex]

∵ sinD = opposite side of ∠D ÷ hypotenuse

∴ sinD = [tex]\frac{BC}{DC}[/tex]

∵ BC = 4 and CD = 5

∴ sinD = [tex]\frac{4}{5}[/tex]

∵ cosD = adjacent side of ∠D ÷ hypotenuse

∴ cosD = [tex]\frac{BD}{DC}[/tex]

∵ BD = 3 and CD = 5

∴ cosD = [tex]\frac{3}{5}[/tex]

∵ tanD = opposite side of ∠D ÷ adjacent side of ∠D

∴ tanD = [tex]\frac{BC}{BD}[/tex]

∵ BD = 3 and BC = 4

∴ tanD = [tex]\frac{4}{3}[/tex]

Let us find the answer to each tile

sinD = [tex]\frac{4}{5}[/tex] ⇒ 4th answer

sinC = [tex]\frac{3}{5}[/tex] ⇒ 2nd answer

sinD × cosD = ( [tex]\frac{4}{5}[/tex]) × ([tex]\frac{3}{5}[/tex]) = [tex]\frac{12}{25}[/tex] ⇒ 1st answer

→ tanC × tanD = [tex]\frac{3}{4}[/tex] × [tex]\frac{4}{3}[/tex] = 1 ⇒ Not used

cosC × tanD = [tex]\frac{4}{5}[/tex] × [tex]\frac{4}{3}[/tex] = [tex]\frac{16}{15}[/tex] ⇒ 3rd answer

Answer:  ↔ sinD × cosD

 ↔ sinC

↔ cosC × tanD

↔ sinD

Step-by-step explanation:

In the given triangle CBD

∵ ∠B is a right angle

∴ CD is the hypotenuse

→ We can use the trigonometry ratios

∵ sinC = opposite side of ∠C ÷ hypotenuse

∴ sinC =  

∵ BD = 3 and CD = 5

∴ sinC =  

∵ cosC = adjacent side of ∠C ÷ hypotenuse

∴ cosC =  

∵ BC = 4 and CD = 5

∴ cosC =  

∵ tanC = opposite side of ∠C ÷ adjacent side of ∠C

∴ tanC =  

∵ BD = 3 and BC = 4

∴ tanC =  

∵ sinD = opposite side of ∠D ÷ hypotenuse

∴ sinD =  

∵ BC = 4 and CD = 5

∴ sinD =  

∵ cosD = adjacent side of ∠D ÷ hypotenuse

∴ cosD =  

∵ BD = 3 and CD = 5

∴ cosD =  

∵ tanD = opposite side of ∠D ÷ adjacent side of ∠D

∴ tanD =  

∵ BD = 3 and BC = 4

∴ tanD =  

Let us find the answer to each tile

→ sinD =  ⇒ 4th answer

→ sinC =  ⇒ 2nd answer

→ sinD × cosD = ( ) × () =  ⇒ 1st answer

→ tanC × tanD =  ×  = 1 ⇒ Not used

→ cosC × tanD =  ×  =  ⇒ 3rd answer

Step-by-step explanation:

ACCESS MORE