Answer:
Proved
Step-by-step explanation:
[tex]cos^4\alpha +sin^4\alpha =\frac{1}{4}(3+cos4\alpha )\\\\[/tex]
Take the Left Hand Side:
[tex]cos^4\alpha +sin^4\alpha\\\\(cos^2\alpha )^2+(sin^2\alpha )^2\\\\(\frac{1+cos2\alpha }{2})^2+(\frac{1-cos2\alpha }{2})^2 \\\\\frac{1+2cos2\alpha +cos^22\alpha }{4}+\frac{1-2cos2\alpha +cos^22\alpha }{4} \\\\[/tex]
[tex]\frac{1+2cos2\alpha +cos^22\alpha +1-2cos2\alpha +cos^22\alpha }{4} \\\\\frac{2+2cos^22\alpha }{4} \\\\\frac{1+cos^22\alpha }{2} \\\\\frac{1}{2}(1+cos^22\alpha )\\\\[/tex]
[tex]\frac{1}{2}(1+\frac{1+cos4\alpha }{2})[/tex]
[tex]\frac{1}{2}(\frac{2+1+cos4\alpha }{2})\\\\\frac{1}{4}(3+cos4\alpha )\\\\[/tex]
Hence Proved!
The following identities were used are attached in an image