Given:
Line segment NY has endpoints N(-11, 5) and Y(3,-3).
To find:
The equation of the perpendicular bisector of NY.
Solution:
Midpoint point of NY is
[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]
[tex]Midpoint=\left(\dfrac{-11+3}{2},\dfrac{5-3}{2}\right)[/tex]
[tex]Midpoint=\left(\dfrac{-8}{2},\dfrac{2}{2}\right)[/tex]
[tex]Midpoint=\left(-4,1\right)[/tex]
Slope of lines NY is
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\dfrac{-3-5}{3-(-11)}[/tex]
[tex]m=\dfrac{-8}{14}[/tex]
[tex]m=\dfrac{-4}{7}[/tex]
Product of slopes of two perpendicular lines is -1. So,
[tex]m_1\times \dfrac{-4}{7}=-1[/tex]
[tex]m_1=\dfrac{7}{4}[/tex]
The perpendicular bisector of NY passes through (-4,1) with slope [tex]\dfrac{7}{4}[/tex]. So, the equation of perpendicular bisector of NY is
[tex]y-y_1=m_1(x-x_1)[/tex]
[tex]y-1=\dfrac{7}{4}(x-(-4))[/tex]
[tex]y-1=\dfrac{7}{4}(x+4)[/tex]
[tex]y-1=\dfrac{7}{4}x+7[/tex]
Add 1 on both sides.
[tex]y=\dfrac{7}{4}x+8[/tex]
Therefore, the equation of perpendicular bisector of NY is [tex]y=\dfrac{7}{4}x+8[/tex].