Answer:
[tex]\left(x-10\right)-\left(2x-5\right)^2=-4x^2+21x-35[/tex]
Step-by-step explanation:
As we have to subtract [tex]\left(2x\:-\:5\right)^2[/tex] from [tex]\left(x-10\right)[/tex]
so
[tex]\left(x-10\right)-\left(2x\:-\:5\right)^2[/tex]
solving and simplifying the polynomial in standard form
[tex]\left(x-10\right)-\left(2x-5\right)^2[/tex]
[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]
[tex]=x-10-\left(2x-5\right)^2[/tex]
[tex]=x-10-\left(4x^2-20x+25\right)[/tex] ∵ [tex]\left(2x\:-\:5\right)^2=\:4x^2-20x+25[/tex]
[tex]=x-10-4x^2+20x-25[/tex]
[tex]=-4x^2+21x-35[/tex]
We know that standard form means that the terms of the expression are ordered from biggest exponent to lowest exponent.
Thus, a simplified polynomial in standard form is:
[tex]\left(x-10\right)-\left(2x-5\right)^2=-4x^2+21x-35[/tex]