The mean time from prescription drop-off to medicine pickup for a customer served at Heisenberg's Pharmacy is 64 minutes, with a standard deviation of 18 minutes. Assuming a normal distribution, what is the probability that a randomly chosen customer experiences service done between 64 and 100 minutes? A. 0.6826 B. 0.4772 C. 0.3413 D. 0.5000

Respuesta :

Answer: B. 0.4772

Step-by-step explanation:

Given : The mean time : [tex]\mu=64\text{ minutes}[/tex]

Standard deviation : [tex]\sigma=18\text{minutes}[/tex]

Let X be the service time of a randomly selected customer.

Assuming a normal distribution, the value of z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = 64

[tex]z=\dfrac{64-64}{18}=0[/tex]

For x = 100

[tex]z=\dfrac{100-64}{18}=2[/tex]

The p-value =[tex]P(64<x<100)=P(0<z<2)[/tex]

[tex]P(z<2)-P(z<0)=0.9772498-0.5=0.4772498\approx0.4772[/tex]

Hence, the  probability that a randomly chosen customer experiences service done between 64 and 100 minutes = 0.4772

Otras preguntas

ACCESS MORE