Answer: B. 0.4772
Step-by-step explanation:
Given : The mean time : [tex]\mu=64\text{ minutes}[/tex]
Standard deviation : [tex]\sigma=18\text{minutes}[/tex]
Let X be the service time of a randomly selected customer.
Assuming a normal distribution, the value of z-score is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x = 64
[tex]z=\dfrac{64-64}{18}=0[/tex]
For x = 100
[tex]z=\dfrac{100-64}{18}=2[/tex]
The p-value =[tex]P(64<x<100)=P(0<z<2)[/tex]
[tex]P(z<2)-P(z<0)=0.9772498-0.5=0.4772498\approx0.4772[/tex]
Hence, the probability that a randomly chosen customer experiences service done between 64 and 100 minutes = 0.4772