Answer:
Solving the inequality [tex]28-K\geq 7(K-4)[/tex], we get [tex]\mathbf{K\leq 7}[/tex]
Step-by-step explanation:
We need to solve the inequality [tex]28-K\geq 7(K-4)[/tex]
Using the BODMAS rule, first we will solve the bracket:
[tex]28-K\geq 7(K-4)\\28-K\geq 7K-28[/tex]
Now, we will subtract 28 from both sides
[tex]28-K-28\geq 7K-28-28\\-K\geq 7K-56[/tex]
Subtracting -7k on both sides
[tex]-K-7K\geq 7K-56-7K\\-8k\geq -56[/tex]
Finally, divide both sides by -8 and inverse the inequality, as we are dividing with a minus digit.
[tex]\frac{-8K}{-8}\leq \frac{-56}{-8}\\K\leq 7[/tex]
So, solving the inequality [tex]28-K\geq 7(K-4)[/tex] we get [tex]\mathbf{K\leq 7}[/tex]