Respuesta :
First we need to calculate annual withdrawal of each investment
The formula of the present value of an annuity ordinary is
Pv=pmt [(1-(1+r)^(-n))÷(r)]
Pv present value 28000
PMT annual withdrawal. ?
R interest rate
N time in years
Solve the formula for PMT
PMT=pv÷[(1-(1+r)^(-n))÷(r)]
Now solve for the first investment
PMT=28,000÷((1−(1+0.058)^(−4))
÷(0.058))=8,043.59
The return of this investment is
8,043.59×4years=32,174.36
Solve for the second investment
PMT=28,000÷((1−(1+0.07083)^(
−3))÷(0.07083))=10,685.63
The return of this investment is
10,685.63×3years=32,056.89
So from the return of the first investment and the second investment as you can see the first offer is the yield the highest return with the amount of 32,174.36
Answer d
Hope it helps!
The formula of the present value of an annuity ordinary is
Pv=pmt [(1-(1+r)^(-n))÷(r)]
Pv present value 28000
PMT annual withdrawal. ?
R interest rate
N time in years
Solve the formula for PMT
PMT=pv÷[(1-(1+r)^(-n))÷(r)]
Now solve for the first investment
PMT=28,000÷((1−(1+0.058)^(−4))
÷(0.058))=8,043.59
The return of this investment is
8,043.59×4years=32,174.36
Solve for the second investment
PMT=28,000÷((1−(1+0.07083)^(
−3))÷(0.07083))=10,685.63
The return of this investment is
10,685.63×3years=32,056.89
So from the return of the first investment and the second investment as you can see the first offer is the yield the highest return with the amount of 32,174.36
Answer d
Hope it helps!