Respuesta :

Answer:

[tex]f(x)=\frac{3}{125} * 25^x[/tex]

Step-by-step explanation:

Given

[tex]f(x)=3*5^{2x-3}[/tex]

Required

To determine if it is an exponential function, we have to write in form of

[tex]f(x) = ab^x[/tex]

If we're able to do so, then the function is an exponential function.

If otherwise, then it is not

[tex]f(x)=3*5^{2x-3}[/tex]

Apply Law of indices

[tex]f(x)=3*\frac{5^{2x}}{5^3}[/tex]

Express 5^3 as 125

[tex]f(x)=3*\frac{5^{2x}}{125}[/tex]

Factorize the exponent of 5

[tex]f(x)=3*\frac{5^{(2)x}}{125}[/tex]

Express 5^2 as 25

[tex]f(x)=3*\frac{25^x}{125}[/tex]

This can be rewritten as:

[tex]f(x)=\frac{3}{125} * 25^x[/tex]

By comparing the above to [tex]f(x) = ab^x[/tex]

We have that

[tex]a = \frac{3}{125}[/tex]

[tex]b^x = 25^x[/tex]

Since, we've be able to express the function as [tex]f(x) = ab^x[/tex]

Then, [tex]f(x)=3*5^{2x-3}[/tex] is an exponential function

The expression in exponential form is expressed as [tex]g(x)=\frac{3}{125} \cdot 25^x[/tex]. Option C is correct.

Given the equation [tex]f(x) = 3\cdot 5^{2x-3}[/tex], we are to write in the form [tex]a(b)^x[/tex]

Simplifying the given expression, we will have:

[tex]g(x) = 3\cdot 5^{2x-3}\\g(x) = 3\cdot 5^{2x} \cdot 5^{-3}\\g(x) =\frac{3}{5^3}\cdot (5^2)^x\\g(x)=\frac{3}{125} \cdot 25^x[/tex]

Hence the expression in exponential form is expressed as [tex]g(x)=\frac{3}{125} \cdot 25^x[/tex]

Learn more here: https://brainly.com/question/19742435

ACCESS MORE
EDU ACCESS
Universidad de Mexico