Is f(x)=3x5^2x-3 an exponential function? If so, write it in the form f(x)=ab^x

Answer:
[tex]f(x)=\frac{3}{125} * 25^x[/tex]
Step-by-step explanation:
Given
[tex]f(x)=3*5^{2x-3}[/tex]
Required
To determine if it is an exponential function, we have to write in form of
[tex]f(x) = ab^x[/tex]
If we're able to do so, then the function is an exponential function.
If otherwise, then it is not
[tex]f(x)=3*5^{2x-3}[/tex]
Apply Law of indices
[tex]f(x)=3*\frac{5^{2x}}{5^3}[/tex]
Express 5^3 as 125
[tex]f(x)=3*\frac{5^{2x}}{125}[/tex]
Factorize the exponent of 5
[tex]f(x)=3*\frac{5^{(2)x}}{125}[/tex]
Express 5^2 as 25
[tex]f(x)=3*\frac{25^x}{125}[/tex]
This can be rewritten as:
[tex]f(x)=\frac{3}{125} * 25^x[/tex]
By comparing the above to [tex]f(x) = ab^x[/tex]
We have that
[tex]a = \frac{3}{125}[/tex]
[tex]b^x = 25^x[/tex]
Since, we've be able to express the function as [tex]f(x) = ab^x[/tex]
Then, [tex]f(x)=3*5^{2x-3}[/tex] is an exponential function
The expression in exponential form is expressed as [tex]g(x)=\frac{3}{125} \cdot 25^x[/tex]. Option C is correct.
Given the equation [tex]f(x) = 3\cdot 5^{2x-3}[/tex], we are to write in the form [tex]a(b)^x[/tex]
Simplifying the given expression, we will have:
[tex]g(x) = 3\cdot 5^{2x-3}\\g(x) = 3\cdot 5^{2x} \cdot 5^{-3}\\g(x) =\frac{3}{5^3}\cdot (5^2)^x\\g(x)=\frac{3}{125} \cdot 25^x[/tex]
Hence the expression in exponential form is expressed as [tex]g(x)=\frac{3}{125} \cdot 25^x[/tex]
Learn more here: https://brainly.com/question/19742435