Tanya95
contestada

Prove that
sec A cosec A - cotA= tan A.
Can someone’s please help me with this one.. I’ll give brainliest

Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identities

secx = [tex]\frac{1}{cosx}[/tex] , cosecx = [tex]\frac{1}{sinx}[/tex]

cotx = [tex]\frac{cosx}{sinx}[/tex] , tanx = [tex]\frac{sinx}{cosx}[/tex]

Consider the left side

secA cosecA - cotA

= [tex]\frac{1}{cosA}[/tex] × [tex]\frac{1}{sinA}[/tex] - [tex]\frac{cosA}{sinA}[/tex]

= [tex]\frac{1}{cosAsinA}[/tex] - [tex]\frac{cosA}{sinA}[/tex]

= [tex]\frac{1-cos^2A}{cosAsinA}[/tex]

= [tex]\frac{sin^2A}{cosAsinA}[/tex] ( cancel sinA on numerator/ denominator )

= [tex]\frac{sinA}{cosA}[/tex]

= tanA = right side ⇒ proven

ACCESS MORE
EDU ACCESS