Respuesta :
Answer:
x1 = 8+√10, x2 = 8 -√10
Step-by-step explanation:
x² - 16x + 54 = 0
[tex]x = \frac{-b +/-\sqrt{b^{2} -4ac} }{2a} \\x = \frac{-(-16)+/-\sqrt{(-16)^{2} -4*1*54} }{2*1} \\\\\\x = \frac{16+/-\sqrt{(40)} }{2*1} = 8+/-\sqrt{10} \\\\x_{1} = 8+\sqrt{10}\\\\x_{2} =8-\sqrt{10}[/tex]
The value of the x is x=8+root 10,and \:x=8-root 10.
What is the formula of the quadratic equation?
[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
Therefore by using the formula we have
[tex]x^2- 16x + 54 = 0[/tex]
a=1,b=-16 and c=54
Therefore we get,
[tex]x_{1,\:2}=\frac{-\left(-16\right)\pm \sqrt{\left(-16\right)^2-4\cdot \:1\cdot \:54}}{2\cdot \:1}[/tex]
[tex]x_{1,\:2}=\frac{-\left(-16\right)\pm \:2\sqrt{10}}{2\cdot \:1}[/tex]
[tex]x_1=\frac{-\left(-16\right)+2\sqrt{10}}{2\cdot \:1},\:x_2=\frac{-\left(-16\right)-2\sqrt{10}}{2\cdot \:1}[/tex]
[tex]x=8+\sqrt{10},\:x=8-\sqrt{10}[/tex]
Therefore we get the roots of the given polynomials are
[tex]x=8+\sqrt{10},and \:x=8-\sqrt{10}[/tex]
To learn more about quadratic formulas visit:
https://brainly.com/question/1214333