Answer:
Approximately [tex]3.81\; \rm m[/tex].
Explanation:
Look up the density [tex]\rho[/tex] of carbon tetrachloride, [tex]\rm CCl_4[/tex], and glycerol:
Let [tex]g[/tex] denote the gravitational field strength. (Typically [tex]g \approx 9.81\; \rm N \cdot kg^{-1}[/tex] near the surface of the earth.) For a column of liquid with a height of [tex]h[/tex], if the density of the liquid is [tex]\rho[/tex], the pressure at the bottom of the column would be:
[tex]P = \rho\cdot g \cdot h[/tex].
The pressure at the bottom of this carbon tetrachloride column would be:
[tex]\begin{aligned} P &= \rho \cdot g \cdot h \\ & \approx 1.59\times 10^{3} \; \rm kg \cdot m^{-3} \times 9.81\; \rm N \cdot kg^{-1} \times 3.02 \; \rm m \approx 4.71 \times 10^{4} \; \rm N \cdot m^{-2} \end{aligned}[/tex].
Rearrange the equation [tex]P = \rho\cdot g \cdot h[/tex] for [tex]h[/tex]:
[tex]\displaystyle h = \frac{P}{\rho \cdot g}[/tex].
Apply this equation to calculate the height of the liquid glycerol column:
[tex]\begin{aligned}h &= \frac{P}{\rho \cdot g} \\ &\approx \frac{4.71 \times 10^{4}\; \rm N \cdot m^{-2}}{1.26 \times 10^{3}\; \rm kg \cdot m^{-3} \times 9.81\; \rm N \cdot kg^{-1}} \approx 3.81\; \rm m\end{aligned}[/tex].