Respuesta :

                               Question 9:

Given the equations

[tex]5x+2y=6;[/tex]

[tex]4x-8y=0[/tex]

solving the system of the equations

[tex]\begin{bmatrix}5x+2y=6\\ 4x-8y=0\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}5x+2y=6\mathrm{\:by\:}4\:\mathrm{:}\:\quad \:20x+8y=24[/tex]

[tex]\mathrm{Multiply\:}4x-8y=0\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:20x-40y=0[/tex]

[tex]\begin{bmatrix}20x+8y=24\\ 20x-40y=0\end{bmatrix}[/tex]

[tex]20x-40y=0[/tex]

[tex]-[/tex]

[tex]\underline{20x+8y=24}[/tex]

[tex]-48y=-24[/tex]

[tex]\begin{bmatrix}20x+8y=24\\ -48y=-24\end{bmatrix}[/tex]

[tex]-48y=-24[/tex]

[tex]\frac{-48y}{-48}=\frac{-24}{-48}[/tex]

[tex]y=\frac{1}{2}[/tex]

[tex]y = 0.5[/tex] ( 0.5 is the result of rounding 0.5 to the nearest 0.01)

[tex]\mathrm{For\:}20x+8y=24\mathrm{\:plug\:in\:}y=\frac{1}{2}[/tex]

[tex]20x+8\cdot \frac{1}{2}=24[/tex]

[tex]20x+4=24[/tex]

[tex]\frac{20x}{20}=\frac{20}{20}[/tex]

[tex]x=1.00[/tex] ( 1.00 is the result of rounding 1 to the nearest 0.01 )

So, the solution is:

(x, y) → (1.00, 0.5)

                            Question 10)

Similarly the question 10 can be solved.

Given the equations

[tex]5x+2y=9;\:4x-3y=44[/tex]

solving

[tex]\begin{bmatrix}5x+2y=9\\ 4x-3y=44\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}5x+2y=9\mathrm{\:by\:}4\:\mathrm{:}\:\quad \:20x+8y=36[/tex]

[tex]\mathrm{Multiply\:}4x-3y=44\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:20x-15y=220[/tex]

[tex]\begin{bmatrix}20x+8y=36\\ 20x-15y=220\end{bmatrix}[/tex]

[tex]20x-15y=220[/tex]

[tex]-[/tex]

[tex]\underline{20x+8y=36}[/tex]

[tex]-23y=184[/tex]

[tex]\begin{bmatrix}20x+8y=36\\ -23y=184\end{bmatrix}[/tex]

[tex]-23y=184[/tex]

[tex]y=-8.00[/tex]   ( -8.00 Rounded to the nearest 0.01 or  the Hundredths Place )

[tex]\mathrm{For\:}20x+8y=36\mathrm{\:plug\:in\:}y=-8[/tex]

[tex]20x+8\left(-8\right)=36[/tex]

[tex]20x=100[/tex]

[tex]x=5.00[/tex]  ( 5.00 Rounded to the nearest 0.01 or  the Hundredths Place )

So, the solution is:

(x, y) → (5.00, -8.00)

ACCESS MORE