Respuesta :

Answer:

[tex] PD = 18 [/tex]

[tex] EQ = 4 [/tex]

Step-by-step explanation:

Given:

AP = 3,

PQ = 5,

QB = 7,

CP = 2,

QD = 14

Required:

1. PD

2. EQ

SOLUTION:

1. Based on Intersecting Chords Theorem,

[tex] AP*PB = CP*PD [/tex]

AP = 3

PB = PQ + QB = 5 + 7 = 12

CP = 2

PD = ?

Plug in the values into the equation

[tex] 3*12 = 2*PD [/tex]

[tex] 36 = 2*PD [/tex]

Divide both sides by 2

[tex] \frac{36}{2} = PD [/tex]

[tex] 18 = PD [/tex]

[tex] PD = 18 [/tex]

b. Based on Intersecting Chords Theorem,

[tex] EQ*QD = AQ*QB [/tex]

EQ = ?

QD = 14

AQ = AP + PQ = 3 + 5 = 8

QB = 7

Plug in the values into the equation

[tex] EQ*14 = 8*7 [/tex]

[tex] EQ*14 = 56 [/tex]

Divide both sides by 14

[tex] EQ = \frac{56}{14} [/tex]

[tex] EQ = 4 [/tex]

ACCESS MORE
EDU ACCESS